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PCA Swiss roll problem

• Principal Components Analysis (PCA) preserves large pairwise distances
• Euclidean distance between two points on the Swiss roll does not 

accurately reflect local structure

Why not just use PCA?



t-SNE preserves local distances and global distances

Amir 2013 Nature Biotech, Suppl.

PCA tSNE



t-SNE – dimensionality reduction algorithm

Goal: find a low dimensional visualization 
that best reflects population structure in 
high dimensional space

à colloquially, get a feel for how objects 
are arranged in data space  
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Laurens van der Maaten explains t-SNE (UCSD seminar) – fun and informative!!

https://www.youtube.com/watch?v=EMD106bB2vY



High-D data space. Draw Gaussian bell (circle) around data point. Measure density of all other 
points relative to that Gaussian bell, and establish probability distribution that represents their 
similarity. Computes local densities to get a distribution of pairs of points. 
à Pij

Low-D 2D map. Repeat above. 
à Qij

Mathematically minimize P||Q difference. Zero would be if two points were the same.

t-SNE operation



Barnes-Hut Modification of t-SNE (bh-SNE)



t-SNE

Advantages

• single cell information

• non-linear assumptions (as opposed to PCA)

• preserves local and global structure

Limitations

• computationally expensive; obligate downsampling means data are discarded

• plot axes are arbitrary and have no intrinsic meaning

• no population identification; follow up approaches required to assign identity 

to clusters and cells

• distance between clusters is not meaningful; no hierarchy
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SPADE: Hierarchical clustering algorithm

Goal: organize cells into a hierarchy using 
unsupervised approaches

à colloquially, generate a tree of relationships

spanning tree progression of density normalized events

Output minimal spanning tree (MST) highlights the relationships between most 
closely related cell type clusters



SPADE

SPADE views data as a cloud of 
points (cells) where the dimensions = 
# markers

Density-dependent downsampling
to equalize density in different parts of 
cloud, ensures rare cells not lost

Agglomerative clustering based on 
marker intensity

Connect clusters in minimal 
spanning tree that best reflects 
geometry of the original cloud

Upsampling, map each cell in the 
original data set to the clusters



SPADE

Advantages

• rare pops preserved through density-dependent downsampling

• enables visualization of continuity of phenotypes

• can combine data sets that share common markers, and then co-map 

any markers unique to each data set (see orig. paper)

Limitations

• loss of single cell information

• user chooses cluster number

• MSTs are non-cyclic and paths can be artificially split

SPADE

t-SNE



PhenoGraph

Goal: automated partitioning of high-
dimensional single-cell data into 
subpopulations 

à colloquially, map nearest neighbors



PhenoGraph

First order relationship – find the k nearest neighbors for each cell using 
Euclidean distance

Second order relationships – cells with shared neighbors should be placed 
near one another

Third, identify communities – Louvain method that measures the density of 
edges inside communities to edges outside communities



PhenoGraph: Number of neighbors

Neighbors = 5 Neighbors = 30 Neighbors = 200



Manual gate overlays PhenoGraph

Naive B
ASC
MBC (total)
Ag-exper.

PhenoGraph – population discovery



PhenoGraph

Advantages

• opportunity for population discovery

• can resolve subpopulations as rare as 1 in 2000 cells 

• robust to cluster shape (e.g., need not be spherical)

Limitations

• user specifies number of neighbors

• ideal cluster number, or biologically relevant cluster number, is largely 

unconstrained



Next Presentation: Install the Algorithms on your 
Personal Computer
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