Basics of advanced FlowCytometry

Florian Weisel, PhD
Laboratory of Mark J. Shlomchik, M.D., Ph.D.
Department of Immunology
University of Pittsburgh School of Medicine
Biomedical Science Tower
Pittsburgh, PA
Tissue disruption for single-cell suspensions

In media or staining buffer

vs.

Fisher Scientific
Part no 1255310
Tissue disruption for single-cell suspensions

In media or

Staining buffer
Tissue disruption for single-cell suspensions
Tissue disruption for single-cell suspensions
Organ dissociation
gentleMACS Octo Dissociator (Miltenyi)

HBSS Mg+ Ca+
ColD (45U/ml)
DNaseI (80U/ml)
3% FCS (HI)

Heat inactivate FCS:
30min @ 56°C
Staining Buffer:

PBS
3% FCS
0.02 – 0.05% NaN₃ (membrane turn-over; contaminations)
2mM EDTA (chelating agent; complexes Ca²⁺, Mg²⁺)

Always stain on ice!
Check antibodies for precipitation!
Do not use NaN₃ if cells are used for functional assays!
Stain 6x10⁶ lymphocytes in 50µl (=120x10⁶/ml)

For lymphocytes:
Spin 14000 rpm (= 370g) 1min per 2ml
Elko Filtering co - Nylon Mesh 03-80/37
5 yards $255.1
Enrichment of cell populations examples

NEGATIVE SELECTION IS BETTER!!!!
.... don’t touch cells of interest
Positive / Negative enrichment

For example: aCD19 – 1mg for $95
Biotinylate in own lab
Un-touched enrichment of cell populations
A cheaper way

Cells + biotinylated ab-cocktail

80µl per 1x10^8 cells

5ml = $790
65 spleens
6.5x10^9 cells

EasySep 1x10^9 cells $550
Miltenyi 1x10^9 cells $550

Beads are six times cheaper than kit
Un-touched enrichment of cell populations

Always do a purity check – just to be sure

TCR-β, CD11b, CD43, CD49b, CD90.2, Ly-6G/C (Gr-1)
Getting adherent cells ready for flow

Can’t use trypsin – cuts off all surface proteins

scrape

5-10mM EDTA in PBS

45U/ml Collagenase D (low proteinase activity) in HBSS
Staining in plates

0.2ml per well,
Only use every other well
Staining in „bullet tubes“

1.2ml per tube
Staining in plates – analysis in „bullet tubes“
Adding PI/ DAPI/ 7AAD ...

Cells in 150 μl

150 μl buffer with 2x PI
live / dead staining of viable cells

If cells are alive while running on the cytometer add DNA-dye directly at the machine

PI
DAPI
7-AAD

These dyes stain DNA – they make it into the nucleus of dead cells and are excluded by intact cells

Side Scatter = granularity
Forward Scatter = size
Intracellular staining

This comes as 10x!!!!

Fixation

Fixation and permeabilization
For intracellular staining
Intracellular staining

Fc-block (CD16/32) +/- serum 10min
---wash---
Surface stain in SB 30+min
---wash---
500µl CytoFix/CytoPerm 20+min
---wash in 1xPerm/Wash---
Intracellular stain in Perm/Wash 30+min
---wash in 1xPerm/Wash---

Can’t use DNA dye anymore for live/dead discrimination since all nuclei are accessible – DAPI/7-AAD ... can be used as DNA content measure
live / dead staining of fixed cells

Can’t use DNA dyes anymore since all nuclei are accessible.
DNA dyes can now be used for DNA content measurement - see later

Fixable Viability dyes covalently bind to **free primary amines**.
You can get them in almost all colors now (Zombie, Ghost ...)
Stain with fixable viability dye prior to fixation

A On live cells dye stains only surface.
B Dead cells have compromised membrane and dye therefore also stains intracellular amines making dead cells brighter

These dyes essentially stain proteins and can therefore be used as size marker. Much more accurate than ForwardScatter
Staining for active apoptotic cells

Apoptotic cells have active caspases

Besides expensive kits there is a great (and cheap) reagent:

FITC fluorescent Caspase inhibitor “CaspGlow”

SM Biochemicals LLC; Cat # SMFMK020

Irreversibly binds to multiple active caspases and therefore turns apoptotic cells green upon incubation with this reagent (30-40min @ 37°C)
singlets / doublets

laser

laser

laser

 SSC-H vs SSC-W
 FSC-H vs FSC-W
 live singlet
singlets / doublets
Antibody titers

Always titer antibodies

Find dilution which gives good separation with minimal background

too bright staining might lead to compensation issues
Multicolor Flow – compensation/ single color controls

Set up voltage for each channel to define positive / negative populations

Ideally use same antibody for comp controls on the cells used in your experiment. This will result in the same brightness of all single color controls as it is in the real stain.
3 golden rules:

Controls need to be at least as bright as any sample will apply the compensation to.

Background fluorescence should be the same for the positive and negative control populations for any given parameter.

Your compensation color must be matched to your experimental color.
If target population is too small better use different antibody or beads:

Mix 50:50 unconjugated beads (white; this gives the negative peak) with anti-rat/hamster (green) or anti-mouse (blue) and incubate with antibody pre-dilution in desired color.
Multicolor Flow –
Check configuration of cytometer

IMMUN LSR II BST E1005

The LSR II is equipped with 5 lasers running on Diva 8/Windows 7. Lasers: 355 20mW Trigon, 405 50mW Trigon, 488 20mW Trigon, 532 150mW Octagon, 640 100mW Trigon. For configuration, click here. For Fluorofinder panel design, click here.

<table>
<thead>
<tr>
<th>DETECTOR NAME</th>
<th>LP MIRROR</th>
<th>BP FILTER</th>
<th>FLUOROCHROMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>488 Laser A</td>
<td>635</td>
<td>695/40</td>
<td>PerCP/PerCP-Cy5.5</td>
</tr>
<tr>
<td>488 Laser B</td>
<td>505</td>
<td>525/50</td>
<td>FITC, GFP</td>
</tr>
<tr>
<td>488 Laser C</td>
<td>---</td>
<td>488/10</td>
<td>SSC</td>
</tr>
<tr>
<td>532 Laser A</td>
<td>705</td>
<td>780/60</td>
<td>PE-Cy7</td>
</tr>
<tr>
<td>532 Laser B</td>
<td>685</td>
<td>710/50</td>
<td>PE-C5.5</td>
</tr>
<tr>
<td>532 Laser C</td>
<td>635</td>
<td>670/30</td>
<td>PE-Cy5</td>
</tr>
<tr>
<td>532 Laser D</td>
<td>595</td>
<td>610/20</td>
<td>PEtrxRED/PEx</td>
</tr>
<tr>
<td>532 Laser E</td>
<td>---</td>
<td>575/20</td>
<td>PE</td>
</tr>
<tr>
<td>640 Laser A</td>
<td>755</td>
<td>780/60</td>
<td>APC-Cy7</td>
</tr>
<tr>
<td>640 Laser B</td>
<td>700</td>
<td>720/20</td>
<td>Alexa 700</td>
</tr>
<tr>
<td>640 Laser C</td>
<td>---</td>
<td>660/20</td>
<td>APC</td>
</tr>
<tr>
<td>405 Laser A</td>
<td>595</td>
<td>610/20</td>
<td>BV605</td>
</tr>
<tr>
<td>405 Laser B</td>
<td>505</td>
<td>525/50</td>
<td>V500, V510, Alexa 430</td>
</tr>
<tr>
<td>405 Laser C</td>
<td>---</td>
<td>450/50</td>
<td>Pacific Blue, Alexa 405, BV421, V450</td>
</tr>
<tr>
<td>355 Laser A</td>
<td>690</td>
<td>740/35</td>
<td>BUV 737</td>
</tr>
<tr>
<td>505</td>
<td>530/30</td>
<td>Indo 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>670LP</td>
<td>Red Side pop.</td>
<td></td>
</tr>
<tr>
<td>355 Laser B</td>
<td>379/28</td>
<td>BUV 395</td>
<td></td>
</tr>
<tr>
<td></td>
<td>405/20</td>
<td>Indo-1 High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>450/50</td>
<td>DAPI, Alexa 350, Indo Violet</td>
<td></td>
</tr>
</tbody>
</table>
10 color flow example

Blue Laser (488nm) FSC

- PerCP
- PerCP-Cy5
- PE-Cy5

355 UV Laser (355nm)

- Hoechst
- Indo-1 (Blue)
- Blue SP

Violet Laser (407nm)

- FITC
- GFP
- CFSE

Red Laser (640nm)

- APC
- APC-Cy7
- APC-700

Green Laser (532nm)

- PE-Cy7
- PE-Cy5
- PE-Cy3
- Biotin
- Biotin+SA

- Alexa Fluor 405
- Alexa Fluor 488
- Pacific Blue
- BV421
- BV500
- BV510
- BV600
Cytometer setup

CHANGING FILTERS – bring it back and change to default configuration. If weird signal ask flowCore to check filters

USE CST SETTINGS or NOT????

YES – USE CST SETTINGS

Voltage and laser delay – green laser has largest delay and therefore is impacted most.
Watch cells for shifting
Blue laser is always zero (=reference)

Use low FCS concentration (below 0.5%) during sample run to minimize background – especially for fixed samples
10 color flow - example (LSRII)

- lymphocytes
- plasmablasts/plasma cells

- naive B cells
 - CD27 neg MBCs
- memory B cells
 - memory B cells

- plasmablasts
 - CD38
 - CD138

- CD19
 - 12.7%
 - 31.4%
 - 34.3%

- CD27

- IgM
- IgG

- memory B cells plasmablasts
Wikipedia:
In cytometry, compensation is a mathematical correction of a signal overlap between the channels of the emission spectra of different fluorochromes.

An Introduction to Compensation for Multicolor Assays on Digital Flow Cytometers
BD Biosciences, San Jose, CA

Compensation

Spillover is due to the physical overlap among the emission spectra of certain commonly used fluorochromes. Spillover occurs whenever the fluorescence emission of one fluorochrome is detected in a detector designed to measure signal from another fluorochrome (Figure 1).

You can see from emission spectra of FITC that part of the signal is also detected by the 585/43 bandpass filter which is supposed to pick up PE signal.
Compensation

Uncompensated
FITC spills into PE

Compensated
(median of FITC negative and FITC positive line up)

https://expertcytometry.com/how-to-compensate-a-4-color-flow-cytometry-experiment-correctly/
As you can see on the left, the data is compensated but the display is troublesome. The reason the data is displayed incoherently is because it has yet to be **transformed**.

Transformation allows the full spread of the data to be visualized, while removing events off the axis. As shown on the right, when the correct transformation is applied, the data around ‘zero’ on both the Y-axis and X-axis is re-plotted. **Now the data is shown WITHOUT being compressed against these axes.**

https://expertcytometry.com/how-to-compensate-a-4-color-flow-cytometry-experiment-correctly/
Tricky stains
BrdU

Fc-Block + EMA
Surface staining
EtOH destroys APC, APC-Cy7!
1% PFA
100U DNaseI
Intracellular staining + anti-BrdU ab over night

60min PFA

10min PFA
Tricky stains
BrdU + GFP

Fc-Block + EMA
Surface staining
---IF staining GFP+ cells: 5min 1% PFA at RT
EtOH
PFA
DNaseI
Intracellular staining + anti-BrdU ab

<table>
<thead>
<tr>
<th>GFP+</th>
<th>BrdU injected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GFP+</th>
<th>PBS injected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GFP -</th>
<th>BrdU injected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GFP -</th>
<th>PBS injected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ prefix
- prefix
BrdU vs EdU
EdU is very expensive ... but you can buy it from Carbonsynth LLC (1g for $240) ThermoFischer charges $459 for 50mg (you can also buy 5g for $4.830 there 😊) So EdU and BrdU are around same prize given that you need the expensive aBrdU antibody or the EdU kit
Declogging
FIRST RUN BLEACH+WATER & “PRIME

REQUIRES TRAINING by FlowCore!!!!!
Declogging

ALWAYS WEAR GLOVES!!!!!
Declogging REQUIRES TRAINING by FlowCore!!!!!
Cleaning

Run 5 min bleach after your experiment and record it.

Run 5 min water and record it.
Cell Sorting

Prepare samples at around 30×10^6 lymphocytes per ml
You can sort into plates (up to 384) and various tubes

- 1.5ml 4 streams
- 5m 4 streams
- 15ml 2 steams
 (50ml no holder but can just put in rack)

Collection tubes can be cooled – let operator know in advance

Block collection tubes with protein to prevent sorted cells sticking to plastic
What Is a Full Spectrum Signature?

The Aurora is capable of measuring the entire emission spectra of fluorescent dyes excited by the installed lasers.

Emission spectra excited by the Violet, Blue, and Red lasers are measured from the laser line through the infrared region.

Full spectrum capture enables the use of novel unmixing algorithm for data analysis.
Aurora vs regular cytometer

APC and Alexa 647 have different full spectrum

Can be separated on Aurora

Cannot be separated on regular cytometer
Aurora

Pacific blue and BV421 works together on Aurora

Same channel on regular cytometer

Fluorescence Spectra Analyzer

BV421

Pacific blue

450/50
Aurora Multi multi color flow

<table>
<thead>
<tr>
<th>B2/ Bx</th>
<th>BD Horizon BB515 AF 488</th>
<th>FITC</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>AF 532</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>PE-CF594</td>
<td>PE/Dazzle 594</td>
</tr>
<tr>
<td></td>
<td>PE-etfluor 610</td>
<td>Pe-Texas Red</td>
</tr>
<tr>
<td></td>
<td>PE-AF610</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>PE-Cy5</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>PE-Cy5.5</td>
<td>PerCP</td>
</tr>
<tr>
<td></td>
<td>PerCP-Cy5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB700</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>PE-AF700</td>
<td>PerCP-eFluor 710</td>
</tr>
<tr>
<td>B14</td>
<td>PE-Cy7</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>APC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eFluor 660</td>
<td>AF 647</td>
</tr>
<tr>
<td>R4</td>
<td>APC-Cy5.5</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>APC-R700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AF700</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Zombie NIR</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>APC/Fire 750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC-Cy7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APC-eFluor 780</td>
<td></td>
</tr>
</tbody>
</table>

V1	BV421	
V2	Super Bright 436	
	eFluor 450	
V3	BD V450	**pac blue**
V4	BV480	
V5	BV510	
	eFluor 506	
	BD V500	
V8	pacific orange	
V9	BV570	
V10	Super Bright 600	
	BV605	
	eVolve 605	
	Qdot 605	
V11	Super Bright 645	
	BV650	
	eVolve 655	
	Qdot 655	
V13	Super Bright 702	
	Qdot 705	
V14	BV711	
V16	BV786	
	Qdot 800	

Validated by Cytek

My favorite panel
Aurora

Multi multi color flow

Spread matrix for 24 Fluors that can be use in combination

<table>
<thead>
<tr>
<th>BV421</th>
<th>SB426</th>
<th>eFl</th>
<th>BV450</th>
<th>BV510</th>
<th>BV570</th>
<th>BV605</th>
<th>BV650</th>
<th>BV711</th>
<th>BV750</th>
<th>BV785</th>
<th>BBS15</th>
<th>AF488</th>
<th>AF532</th>
<th>PE</th>
<th>PECYS4</th>
<th>PECPYS5</th>
<th>PECPY7</th>
<th>APC</th>
<th>AF647</th>
<th>AF700</th>
<th>APC Per 750</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

To read this table: fluor in the row impacts the one in the column. Red means the fluor in that row has significant spread into the dye in the column (for example PE into BV570). Areas in bright pink and red is where more attention to panel design is needed.
Aurora vs LSRII

AURORA

- FSC-A vs SSC-A
- Comp-BV510-A :: CD69
- Comp-FITC-A :: CD45RB
- Comp-BV421-A :: CD27
- Comp-APC-Cy7-A :: CD19

LSRII

- FSC-A vs SSC-A
- Comp-BV510-A :: CD69
- Comp-FITC-A :: CD45RB
- Comp-BV421-A :: CD27
- Comp-APC-Cy7-A :: CD19

Naive B cells

Memory B cells
Aurora – unmixing
You can change your raw data afterwards

Had bad (=way too bright single color controls). Recorded better single color controls next day and unmixed again
Thanks for your Attention

Questions?