Power of Algorithmic Analysis

Lisa Borghesi Professor of Immunology Director, Unified Flow Core

Power of Algorithmic Analysis

High-dimensional analysis – Human brain is not so hot at >3 dimensions. What does 18 dimensional data (18 color) even look like in high dimensional space?

Highlight patterns in the data – Manual analysis with a plethora of iterative bivariate plots is highly inefficient.

Facilitates population discovery – Meaningful populations can be overlooked b/c biases and a priori knowledge dictate analysis.

Automated/more unbiased – Manual analysis is subjective and biased.

Fun!

Creating a Human B cell Atlas

A day in the life of a FlowJo analyst

Donor 1, Tissue 1

Courtesy: Florian Weisel

D256 various samples – subsets CD45RB/ CD69

Courtesy: **Nadine Weisel**

10

10

10³ 104

3.22

12.6

105

5.99

9.08

105

41.7

11.3

105

39

18.1 10⁵

10⁴

D256 various samples – IgG/ IgM distribution in B cell populations

ВG

atypical B cells CD21- CD27-

classical MBC CD21+ CD27+

activated MBC CD21- CD27+

Courtesy: Nadine Weisel **Problem**: how do you visualize millions of cells marked by a rainbow of colors in order to establish the underlying structure or principles of organization?

Solution: take high-D spaces and embed this information into low-D spaces that our brains can understand

 \rightarrow algorithms identify local patterns and global patterns that our brains may miss when performing manual analysis via iterative pairwise plots

Unbiased analysis of across-donor heterogeneity

Donor distance:

D205

D243

D256

D205 D243

D182

D181

Tissue-specific B cell signatures

Naive B ASC MBC IgM+IgD-MBC IgD+ MBC sw Ag-exper. sw

Next Presentations: How the algorithms work and how you can install on your personal computer

Resources

Useful starting places - reviews

- 1. Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF, Clambey ET. A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data. J Immunol. 2018 Jan 1;200(1):3-22.
- 2. Saeys Y, Gassen SV, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol. 2016 Jul;16(7):449-62.
- 3. Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol. 2016 Jan;46(1):34-43.
- 4. Chester C & Maecker HT. J Immunol. 2015 Aug 1;195(3):773-9. doi: 10.4049/jimmunol.1500633. Algorithmic Tools for Mining High-Dimensional Cytometry Data. J Immunol. 2015 Aug 1;195(3):773-9.

Original application of algorithms

- 1. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011 Oct 2;29(10):886-91. **SPADE**
- Amir el-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Amir el-AD, Davis KL, 3. Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D. Nat Biotechnol. 2013 Jun;31(6):545-52. viSNE
- 3. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Litvin O, Fienberg HG, Jager A, Zunder ER, Finck R, Gedman AL, Radtke I, Downing JR, Pe'er D, Nolan GP. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015 Jul 2;162(1):184-97. **PhenoGraph**
- 4. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7. **CITRUS**
- Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe'er D. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016 Jun;34(6):637-45. Wishbone
- 6. Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe'er D. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014 Apr 24;157(3):714-25. Wanderlust
- 7. McInnes L, Healy J, Melvile J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. https://arxiv.org/abs/1802.03426 UMAP (for advanced Matlab Users, no GUI interface)